# Data Visualization and Basic Statistical Testing

Kimberly Greco, MPH

View course video.



# Course Overview

Course Objective

Provide a foundation in the basic statistical methods and principles necessary to understand, interpret, and communicate insights from data.

#### Course Structure

Lecture 1: Getting to Know Your Data: Types of Data and Descriptive Statistics
 Lecture 2: Sampling Concepts and Comparing Two Means
 Lecture 3: Linear Models and Correlation
 Lecture 4: Comparing Proportions and Measures of Association



# Lecture Outline

**Types of Data** (qualitative vs. quantitative)

### **U** Summarizing Data

Graphical Methods

Numerical Summary Measures

**Confidence Intervals and P-Values** 





**Research Question** 



Hypotheses



Study Design



**Data Collection** 



**Data Analysis** 



**Evidence-Based Information** 





#### **Research Question**



Hypotheses



Study Design



**Data Collection** 



Data Analysis

A clear and focused research question will guide the research process. Every decision regarding study design, data collection, and data analysis should be connected to your research question.



**Evidence-Based Information** 





#### **Research Question**



**Hypotheses** 



Study Design



**Data Collection** 



Data Analysis



**Evidence-Based Information** 

A hypothesis is an attempt to answer your question with an explanation that can be tested. Hypothesis testing is central to the statistical methods we will cover in this course.





**Research Question** 



Hypotheses



**Study Design** 



**Data Collection** 







**Evidence-Based Information** 

Study design, data collection methods, and analytic techniques are selected to address your research question.





**Research Question** 



Hypotheses



Study Design



**Data Collection** 



**Data Analysis** 



**Evidence-Based Information** 

Results are interpreted and effectively communicated through text, tables, and figures. Data has been successfully translated into actionable insights.



# Types of Data

Before you begin any analysis, ask yourself:

### What kind of data am I working with?

Data type determines...

- How you display the data in a table or graph
- How you summarize the data, graphically and numerically
- What statistical methods you use to analyze the data







# Categorical Data

### **Nominal Variables**

Categories are not ordered. Two-level nominal variables are dichotomous.

| Race |       | Hispanic |     |  |
|------|-------|----------|-----|--|
| 1    | White | 0        | No  |  |
| 2    | Black | 1        | Yes |  |
| 3    | Asian |          |     |  |
| 4    | Other |          |     |  |

## **Ordinal Variables**

The order among the categories is important, but not the numerical values.

| Education Level |                           |  |  |  |
|-----------------|---------------------------|--|--|--|
| 1               | Less than high school     |  |  |  |
| 2               | Graduated high school     |  |  |  |
| 3               | Some college or associate |  |  |  |
| 4               | College degree or higher  |  |  |  |



## Numerical Data



### **Discrete Variables**

- Order and magnitude are important
- Usually integers and counts



### **Continuous Variables**

- Order and magnitude are still important
- Can take on any continuous value (not restricted to be integers)



# Grouping Continuous Data

# Continuous measurements can be transformed into ordinal or dichotomous ones.

Examples

- BMI categorized into underweight, normal, overweight, or obese
- Symptom score categorized into mild, moderate, or severe
- Age categorized as younger vs. older

Note: Putting data into buckets leads to a loss of information, but it makes sense when clinically meaningful cut-points exist



## **Bar Plots**



- Display the frequency distribution for **nominal** or **ordinal** data
  - X-Axis displays categories
  - **Y-Axis** displays N or % of cases in each category (should always start at zero)
- Bars should have equal width and be separate from each other so as not to imply continuity



## Histograms



- Display the frequency distribution for **discrete** or **continuous** data
- Similar to bar plots except...
  - X-Axis displays a range of values (instead of distinct categories)
  - **Y-Axis** displays N or % of cases in each interval/group of values
  - Bars are not separated from each other, since we assume "continuity" on the x-axis



## **Box Plots**



**The "Box":** Represents the inter-quartile range (IQR), or middle 50% of the data

- Median: Marks the mid-point of the data, where half the values are greater than or equal to this value and half are less than or equal to this value
- **Upper Quartile:** 75<sup>th</sup> percentile (75% of scores fall below the upper quartile)
- Lower Quartile: 25<sup>th</sup> percentile (25% of scores fall below the upper quartile)



## **Box Plots**



**The "Whiskers"**: The definition of whiskers can vary. They may represent...

- The full extent of the data (maximum and minimum data points).
- The most extreme observations that are within 1.5\*IQR.

**Outliers** are plotted outside the whiskers.



# Box Plots



# Box plots are useful for visualizing the distribution of variables.

- Presentation can be vertical or horizontal
- Length of the box indicates variation in percent agreement
  - For example, Morocco (green) and USA (gray) have less variation (shorter box
     → high % agreement) in life expectancy relative to Somalia (orange) and Mexico (purple)



# Two-Way Scatter Plots



# Scatter plots are used to show the relationship between two quantitative variables.

- Age vs. forced expiratory volume (FEV)
- Flow cytometry vs. image analysis (%)

# Each point on graph represents a pair of values.

- x-axis is the scale for 1<sup>st</sup> variable (or independent variable)
- y-axis is the scale for 2<sup>nd</sup> variable (or dependent variable)



## Two-Way Scatter Plot



# Strength of relationship is measured by how close points are to the x=y trend line.

- Close to line  $\rightarrow$  strong correlation
- Further from line  $\rightarrow$  weak correlation

#### Things to remember:

- If scale for 1<sup>st</sup> & 2<sup>nd</sup> variable are the same, then use same range on the x-axis and y-axis.
- If plotting 1<sup>st</sup> variable against more than one variable, keep axis of 1<sup>st</sup> variable consistent in all graphs.



# Numerical Summary Measures



#### Measures of central tendency or location

• Mean, median, and mode

#### **Measures of dispersion**

- Quantify the variation among the values
- Range, interquartile range, standard deviation and variance



# Numerical Summary Measures

#### Natural way to convey information

- "On average most people exercise 3-4 times per week"
- "Most people would say that we have had a hot summer"

#### Where is the "center" of the data?

- Mean  $\rightarrow$  Average observation
- Median  $\rightarrow$  Middle observation
- Mode  $\rightarrow$  Most frequently occurring value



# Measures of Central Tendency: Mean

- Calculated by summing all values and dividing by the number of observations
  - Takes the magnitude of each value into account
- Most commonly used measure of central tendency
  - Used for discrete and continuous data
  - In general not appropriate for categorical data
    - Exception dichotomous data. Assume cases alive have value of 1 and cases died value of 0.
    - Mean = proportion of cases with value of 1 = proportion of cases alive



# Measures of Central Tendency: Mean

## The mean is influenced by extreme values (outliers)

# What to do in this case? Can we just delete these outliers?

# No, we need measures that are not sensitive to outliers. One such measure is the median.



# Measures of Central Tendency: Median

#### • Defined as the 50<sup>th</sup> percentile

- Rank observations from smallest to largest
- Half of the values are  $\geq$  median and other half are  $\leq$  median
- Does not take the magnitude of each value into account, just the position
- Equal to "center" of the ranked values
  - If odd number of observations  $\rightarrow$  middle value
  - If even number of observations  $\rightarrow$  average of 2 middle values
- Used for ordinal, discrete, and continuous data



# Measures of Central Tendency: Mode

- Defined as the value or observation that occurs most frequently
- Used for all types of data

|                    |   | Post-Treatment Condition | n  | %          |
|--------------------|---|--------------------------|----|------------|
|                    | 1 | Much improved            | 9  | 13%        |
| Mode $\rightarrow$ | 2 | Slightly improved        | 28 | <b>39%</b> |
|                    | 3 | Stays the same           | 16 | 23%        |
|                    | 4 | Slightly worse           | 12 | 17%        |
|                    | 5 | Much worse               | 6  | 8%         |
|                    |   | Total                    | 71 | 100%       |



# Example: Forced Expiratory Volume (FEV)

| Order | FEV   |
|-------|-------|
| 1     | 2.15  |
| 2     | 2.25  |
| 3     | 2.30  |
| 4     | 2.60  |
| 5     | 2.68  |
| 6     | 2.75  |
| 7     | 2.82  |
| 8     | 2.85  |
| 9     | 3.00  |
| 10    | 3.38  |
| 11    | 3.50  |
| 12    | 4.02  |
| 13    | 4.05  |
| Sum   | 38.35 |

#### **FEV Data**

- 13 subjects
- Values are ordered from smallest to largest

#### Mean FEV

- N = 13
- Sum = 38.35
- Mean = (38.35 / 13) = 2.95



# Example: Forced Expiratory Volume (FEV)

| Order | FEV   |
|-------|-------|
| 1     | 2.15  |
| 2     | 2.25  |
| 3     | 2.30  |
| 4     | 2.60  |
| 5     | 2.68  |
| 6     | 2.75  |
| 7     | 2.82  |
| 8     | 2.85  |
| 9     | 3.00  |
| 10    | 3.38  |
| 11    | 3.50  |
| 12    | 4.02  |
| 13    | 4.05  |
| Sum   | 38.35 |

#### **Median FEV**

- Order the data (smallest  $\rightarrow$  largest)
- With 13 observations, median is the value of order = (13+1) / 2 = 7
- Median = 2.82

#### What is the Mode?

• All FEV values are unique  $\rightarrow$  no mode

# What if we have an even number of observations?



# Example: Forced Expiratory Volume (FEV)

| Order | FEV  |
|-------|------|
| 1     | 2.15 |
| 2     | 2.25 |
| 3     | 2.30 |
| 4     | 2.60 |
| 5     | 2.68 |
| 6     | 2.75 |
| 7     | 2.82 |
| 8     | 2.85 |
| 9     | 3.00 |
| 10    | 3.38 |
| 11    | 3.50 |
| 12    | 4.02 |

#### **Median FEV**

- Order the data
- With 12 observations, median is average of 6<sup>th</sup> and 7<sup>th</sup> values

Median = (2.75 + 2.82) / 2 Median = 2.785



# Best measure to report?

- Depends on the type of data and the way in which the values are distributed
  - If data is symmetric and unimodal (i.e., only 1 peak), then mean, median, and mode should all be roughly equal
  - If data is skewed, then the mean is sensitive to extreme values → the median might be more appropriate
- What do I mean by skewed data?



## Symmetric vs. Skewed



#### Skewed to right

- Mostly low values
- Median might be more appropriate

#### Symmetric

 Mean and median would be about the same

#### Skewed to left

4

- Mostly high values
- Median might be more appropriate

6

8

10



#### Example of skewed distribution: Household income





#### Example of skewed distribution: Household income





# Important to use BOTH numerical measures & graphical methods

Example: Distribution of birth weight among infants (<1750 g)

Mean=1,173 Median=1,140 Mean ≈ Median, so we expect a symmetric distribution

What do you think about the histogram?



Weight (grams)



# Important to use BOTH numerical measures & graphical methods

Example: Distribution of birth weight among infants (<1750 g)

Mean=1,173 Median=1,140 Mean ≈ Median, so we expect a symmetric distribution

#### What do you think about the histogram?

- Bimodal distribution
- Low and high weight appear to have different centers





# Measures of Dispersion: Range

#### **Range: Difference in smallest and largest values**

- Easy to compute but <u>not</u> very useful because...
  - Uses only extreme data to calculate
  - Highly sensitive to very small and large values

#### An alternative...

Interquartile Range (IQR): Difference in 25th and 75th percentiles

- Includes middle 50% of the data
- Less sensitive to very small and large values



# Measures of Dispersion: Variance

#### Sample Variance



#### Variance

- Indicates... average degree to which each point differs from the mean
- Calculated as... average of squared distance between observed value and mean value

#### **Standard Deviation**

- Indicates... how spread out a group of numbers is from the mean
- Calculated as... the square root of the variance
- Standard deviation is used because it has the same units of measurement as the mean



Sample Standard Deviation

 $s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$ 

# Example: Calculating Variance & SD

| FEV   | (x <sub>i</sub> – <del>x</del> ) |  |  |
|-------|----------------------------------|--|--|
| 2.30  | -0.65                            |  |  |
| 2.15  | -0.80                            |  |  |
| 3.50  | 0.55                             |  |  |
| 2.60  | -0.35                            |  |  |
| 2.75  | -0.20                            |  |  |
| 2.82  | -0.13                            |  |  |
| 4.05  | 1.10                             |  |  |
| 2.25  | -0.70                            |  |  |
| 2.68  | -0.27                            |  |  |
| 3.00  | 0.05                             |  |  |
| 4.02  | 1.07                             |  |  |
| 2.85  | -0.10                            |  |  |
| 3.38  | 0.43                             |  |  |
| Total |                                  |  |  |

**Step 1**: Calculate difference between each observation and the mean.

N = 13 Mean = 2.95



# Example: Calculating Variance & SD

| FEV   | $(x_i - \overline{x})$ | $(x_i - \overline{x})^2$ |  |
|-------|------------------------|--------------------------|--|
| 2.30  | -0.65                  | 0.423                    |  |
| 2.15  | -0.80                  | 0.640                    |  |
| 3.50  | 0.55                   | 0.303                    |  |
| 2.60  | -0.35                  | 0.123                    |  |
| 2.75  | -0.20                  | 0.040                    |  |
| 2.82  | -0.13                  | 0.169                    |  |
| 4.05  | 1.10                   | 1.210                    |  |
| 2.25  | -0.70                  | 0.490                    |  |
| 2.68  | -0.27                  | 0.073                    |  |
| 3.00  | 0.05                   | 0.003                    |  |
| 4.02  | 1.07                   | 1.145                    |  |
| 2.85  | -0.10                  | 0.010                    |  |
| 3.38  | 0.43                   | 0.185                    |  |
| Total | 0.0                    | 4.66                     |  |

**Step 2**: Square the difference between each observation and the mean. Sum.

**Step 3**: Divide by number of observations minus 1.

Variance = 4.66 / (13-1) = 0.388

**Step 4**: Calculate standard deviation as square root of the variance.

Standard =  $\sqrt{0.388}$ Deviation = 0.623



# Summarizing Data in SPSS (Graphical)

**SPSS:** Analyze > Descriptive Statistics > Frequencies



|                             | Frequencies: Charts         |
|-----------------------------|-----------------------------|
| Chart Type                  |                             |
| O None                      |                             |
| <ul> <li>Bar cha</li> </ul> | arts                        |
| 🔵 Pie cha                   | irts                        |
| 🔵 Histog                    | rams:                       |
| Sho                         | w normal curve on histogram |
| Chart Value                 | es<br>ncies O Percentages   |
| ?                           | Cancel Continue             |



# Summarizing Data in SPSS (Numerical)

**SPSS:** Analyze > Descriptive Statistics > Descriptives





# **Presenting Numerical Summaries**

|                        | Variables    | Treatment (N=628)   | Control (N=372)     |            |                     |
|------------------------|--------------|---------------------|---------------------|------------|---------------------|
|                        | Age          |                     |                     |            |                     |
| Continuous Variables:  | N (Nmiss)    | 628 (0)             | 372 (0)             | <b>\</b> . |                     |
| Mean $\pm$ SD          | Mean ± SD    | 41.6±7.6            | 48.8±7.4            |            | ortant:             |
| Median (IQR)           | Min-Max      | 29.0–59.0           | 29.0–61.0           |            | ays present         |
|                        | Median (IQR) | 40.5 (35.5–48.0)    | 50.0 (44.5–55.0)    | 1.         | The number of       |
| Categorical Variables: | Gender (%)   |                     |                     |            | observations (N) in |
|                        | Female       | 414 (65.9)          | 173 (46.5)          |            | the sample          |
| IN (%)                 | Male         | 214 (34.1)          | 199 (53.5)          | 2.         | The number of       |
|                        | Weight       |                     |                     |            | observations        |
|                        | N (Nmiss)    | 628 (0)             | 370 (2)             |            | missing for each    |
|                        | Mean ± SD    | 148.8±26.4          | 157.3±28.3          |            | variable            |
|                        | Min-Max      | 87.0–243.0          | 71.0–250.0          |            |                     |
|                        | Median (IQR) | 146.0 (129.5–165.0) | 155.0 (137.0–175.0) |            |                     |

N, number of non-missing values; Nmiss, number of missing values; SD, standard deviation; IQR, interquartile range.



# Questions?





# What's next?

# Now that we have mean and standard deviation, how do we know if results are "important" or "significant"?

Two common quantities are reported:

- Confidence intervals
- P-values

Why do we calculate and report these?

• To draw "inferences" about a population mean from our sample



# Calculating a Confidence Interval (CI)

Confidence intervals indicate the precision of the sample mean with n subjects (reflects variability in sampling)

• Lower Limit = mean  $-\left(Z_{critical} * \frac{SD}{\sqrt{n}}\right)$ 

• Upper Limit= 
$$mean + \left(Z_{critical} * \frac{SD}{\sqrt{n}}\right)$$

#### $Z_{critical}$ (also denoted $Z_{1-\alpha/2}$ )

- Measures the number of standard errors to be added and subtracted from the mean in order to achieve a desired confidence level
- Equal to 1.96 for 95% confidence interval
- Obtained from a "reference" distribution (more on this next lecture...)



# Example: Calculating a Confidence Interval



95% Lower Limit=  $2.03 - 1.96 * 0.51/\sqrt{309} = 1.97$ 95% Upper Limit=  $2.03 + 1.96 * 0.51/\sqrt{309} = 2.09$ 

We'll come back to the interpretation...



# What does a confidence interval mean?

**True Population Mean = 2.5** 



A fundamental task of biostatistics is to analyze <u>samples</u> in order to make inferences about the <u>population</u> from which the samples were drawn.

A confidence interval tells us how confident we can be that the results of a study reflect what we would expect to find if it were possible to survey the entire population.



# What does a confidence interval mean?

**True Population Mean = 2.5** 



So, a 95% confidence interval is a range of values that we can be 95% certain contains the true mean of the population.

#### In practice...

- Repeat an experiment 20 times
- Calculate the 95% CIs for each experiment
- Expect 95% of the intervals to contain the true population mean (≥ 19 of the intervals)

**Confidence Intervals & P-Values** 

# Example: Calculating a Confidence Interval



Interpretation:

Based on our sample data, we are 95% confident that the true mean FEV in the population is between 1.97 and 2.09.

95% Lower Limit=  $2.03 - 1.96 * 0.51/\sqrt{309} = 1.97$ 

95% Upper Limit=  $2.03 + 1.96 * 0.51/\sqrt{309} = 2.09$ 



### P-Values

- Another common quantity reported is the p-value
- Defined as the probability of observing a test statistic more extreme than the observed value by chance
- Values range between 0-1
  - Small  $p \rightarrow$  result not likely due to chance
  - Large  $p \rightarrow$  result is likely due to chance
- Tied to concept of hypothesis testing



# P-Values & Hypothesis Testing

#### **Hypothesis Testing**

- Purpose: examine whether a difference (or an effect) is present or not by using statistical tests
- Decision:
  - "Yes, there is a significant difference..."
  - "No, there is not a significant difference ..."
- P-values are tied to "significance" → p < 0.05 is a commonly used threshold for significance</li>



3

# Process of Hypothesis Testing

Define null  $(H_0)$  and alternative  $(H_1)$  hypotheses.

Example: Means of 2 groups: equal  $(H_0)$  vs. not equal  $(H_1)$  Calculate the probability of observing a value  $\geq$  **your test statistic** if the means are equal (i.e., H<sub>0</sub> is true)  $\rightarrow$ 

p-value

Determine how different the observed data is from the null hypothesis  $\rightarrow$ 

2

calculate your test statistic

Decide whether or not to reject the null hypothesis that the means are equal

4



# Next Class

- To fully understand confidence intervals and p-values, we need to take a step back and briefly discuss a few concepts:
  - Sampling
  - Normal Distribution
  - Central Limit Theorem
- This will lead us into the comparison of two means



# Questions?

kimberly.greco@childrens.harvard.edu



