Data Visualization and Basic Statistical Testing Kimberly Greco, MPH

View course video.

Course Overview

Course Objective

Provide a foundation in the basic statistical methods and principles necessary to understand, interpret, and communicate insights from data.

Course Structure

Lecture 1: Getting to Know Your Data: Types of Data and Descriptive Statistics
 Lecture 2: Sampling Concepts and Comparing Two Means
 Lecture 3: Linear Models and Correlation
 Lecture 4: Comparing Proportions and Measures of Association

Correlation

Lecture Outline

□ Analysis of Variance (ANOVA)

Problem with Multiple Comparisons

Comparing \geq 3 population means \rightarrow ANOVA

Correlation

Linear relationship between two continuous variables

Linear Regression

Example: Emergency room admissions by the time of month in 1999

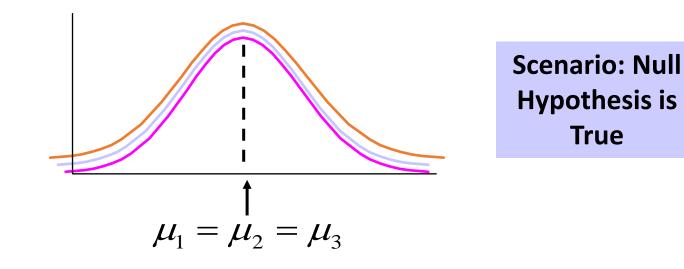
Before Full Moon	During Full Moon	After Full Moon
6.4	12	11.4
7.1	13	10.3
6.5	14	15.8
8.1	12	11
8.6	16	11.1
9.4	11	5.8
11.5	13	9.2
9.5	16	7.9
5.4	19	7.7
11.7	13	11
10.8	20	10
9.6	14	12.1

Question: Is there a difference in the number of ER admissions based on moon cycle?

Example: No difference in mean admissions (μ) by moon cycle

$$H_0: \mu_1 = \mu_2 = \dots = \mu_c$$

$$H_1: \text{ Not all } \mu_i \text{ are the same}$$



Example: Difference in mean admissions (μ) by moon cycle

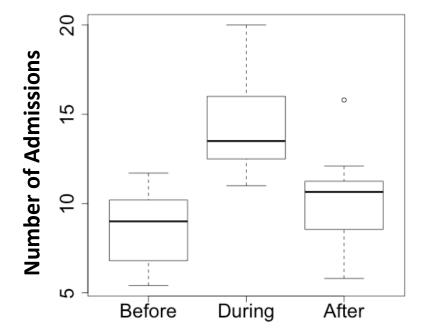
$$\begin{aligned} H_0 : \mu_1 &= \mu_2 = \cdots = \mu_c \\ H_1 : \text{ Not all } \mu_i \text{ are the same} \end{aligned} \begin{array}{ll} \text{Scenario: Null} \\ \text{Hypothesis is} \\ \text{NOT True} \end{aligned}$$

$$\mu_1 = \mu_2 \neq \mu_3 \qquad \qquad \mu_1 \neq \mu_2 \neq \mu_3$$

Example: Admissions Summary Statistics & Graph

	Ν	Mean	Standard Deviation	Standard Error of Mean
Before	12	8.717	2.0701	0.5976
During	12	14.42	2.811	0.8115
After	12	10.28	2.5295	0.7302
All Groups	36	11.14	3.434	0.5723

Variance of admissions = (3.434)² = 11.7924



Note: not a linear relationship between moon cycle and number of admissions

We are comparing means... So, can we use a t-test for this?

With three means, there are three possible comparisons:

- Before vs. During full moon
- Before vs. After full moon
- During vs. After full moon

We can use three pairwise t-tests to compare three means:

- T-test for mean **Before** vs. mean **During**
- T-test for mean **Before** vs. mean **After**
- T-test for mean **During** vs. mean **After**

However, problem arises when we do this....

More generally: The problem with multiple comparisons

Type I error is rejecting H₀ when H₀ is true (false positive)

- The probability of making a type I error is represented by the alpha level (α), which is the p-value below which you reject the null hypothesis
- Any time you reject H₀ because pvalue < α, it's possible that you're wrong (i.e., H₀ is true and your significant result is due to chance)
- α = 0.05 translates to a 5% chance of a false positive

More generally: The problem with multiple comparisons

Each hypothesis test contains a type I error (α)

• So far we have used α =0.05 (i.e., 95% confidence interval)

Type I error for <u>one</u> comparison: $1 - (1 - \alpha) = 1 - (0.95) = 0.05$ **Type I error for <u>three</u> comparisons:** $1 - (1 - \alpha)^3 = 1 - (0.95)^3 = 0.14$

14% of the time we will reject H_0 (means are equal) in favor of H_1 (means are not equal) even when H_0 is true

• **14%** of the time we could draw the wrong conclusion – not **5%**!

More generally: The problem with multiple comparisons

What if we have five means and $\alpha = 0.05$?

• We need ten pairwise t-tests to compare five means

Type I error for <u>one</u> comparison: $1 - (1 - \alpha) = 1 - (0.95) = 0.05$ **Type I error for <u>ten</u> comparisons:** $1 - (1 - \alpha)^{10} = 1 - (0.95)^{10} = 0.40$

• 40% of the time we could draw the wrong conclusion – not 5%!

More generally: The problem with multiple comparisons

In general, if you have k comparisons:

Total Type I error = $1 - (1 - \alpha)^k$

To avoid this issue with total type I error, we use the **analysis of variance (ANOVA)** method

What is Analysis of Variance (ANOVA)?

- Statistical test to compare 3 or more population means
 - Continuous dependent variable & categorical independent variable(s)
 - Generalizes the t-test beyond two means
- Hypotheses

 H_0 : The population means of all groups are equal

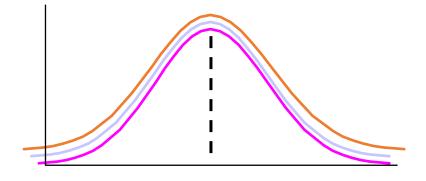
$$(\mu_1 = \mu_2 = \dots = \mu_k)$$

H₁: <u>At least one</u> population mean differs from the others

ANOVA Assumptions

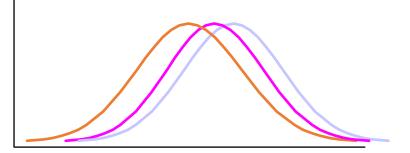
- Random samples are drawn from independent observations
- Underlying population variances are equal
- Underlying data are approximately normally distributed
- Use when data are quantitative
- Assume no shape to the relationship between dependent and independent variable (i.e., linear)

No difference in 3 means – variance equal



$$\mu_1 = \mu_2 = \mu_3$$

Difference in 3 means – variance equal



 $\mu_1 \neq \mu_2 \neq \mu_3$

Analysis of Variance (ANOVA)

	N	Mean	Standard Deviation	Standard Error of Mean
Before	12	8.717	2.0701	0.5976
During	12	14.42	2.811	0.8115
After	12	10.28	2.5295	0.7302
All Groups	36	11.14	3.434	0.5723

Variance of admissions = (3.434)² = 11.7924

- ANOVA evaluates if independent variable(s) in a model (moon cycle) explain the total variation in the dependent variable (admissions)
- To get at this idea of total variation...
 - Sample mean of responses for each group (before, during, after)
 - Grand mean of all responses, irrespective of group

Analysis of Variance (ANOVA)

	N	Mean	Standard Deviation	Standard Error of Mean
Before	12	8.717	2.0701	0.5976
During	12	14.42	2.811	0.8115
After	12	10.28	2.5295	0.7302
All Groups	36	11.14	3.434	0.5723

Variance of admissions = (3.434)² = 11.7924

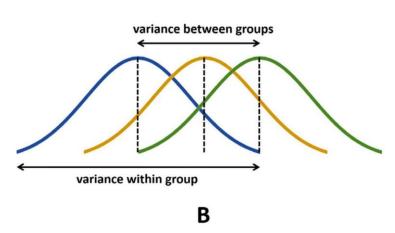
- Viewed as one sample (rather than k samples from individual groups), we measure the total variability among observations (n=36)
- **Total variation** in the dependent variable is equal to:
 - Summing the squares of the differences between each observation (irrespective of group) and the grand mean
 - sample variance * (n-1)
 - Called "sum of squares total" (SST)

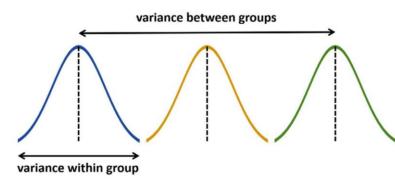
Total variation in admissions

SST = (11.7924)*(36-1) = 412.723

Partitioning the Variance

Α

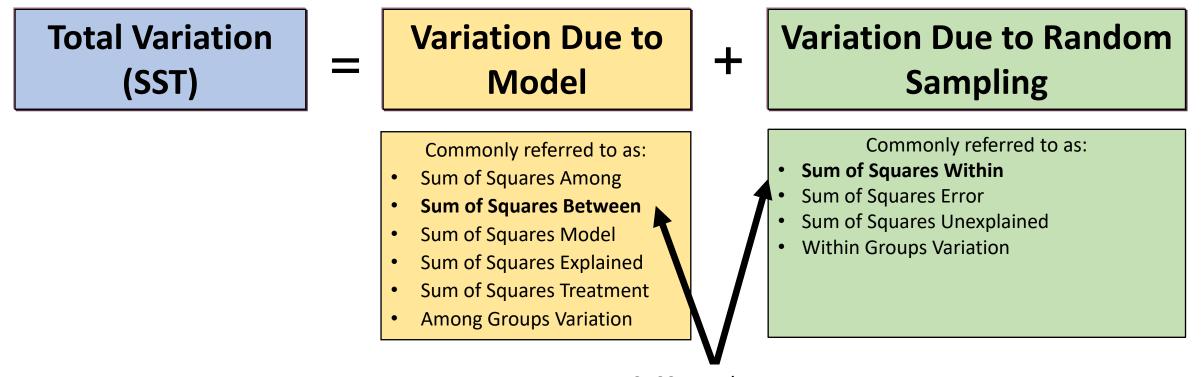




Total variation (SST) in the dependent variable has two sources:

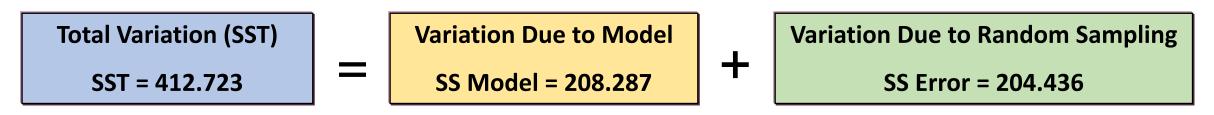
- "Variation due to Model" → Variation due to independent variables
 - Variance <u>between</u> groups
 - Calculated as the variance between each group mean and the grand mean
- 2. "Variation due to Random Sampling" \rightarrow Error variation
 - Variance <u>within</u> groups
 - Calculated as the variance between each observation in a group and its group mean

Partitioning the Variance



Note: SPSS uses between group and within group terms in output

Example: Difference in mean admissions (μ_i) by moon cycle



To evaluate whether moon cycle explains the variation in admissions...

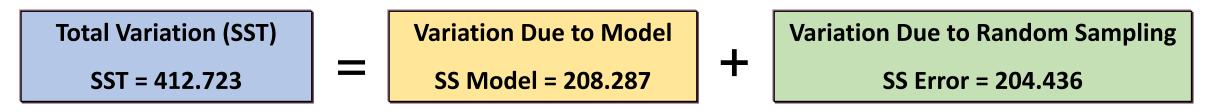
Step 1: Compute mean squares:

MS Model = SS Model / (k-1) -MS Error = SS Error / (n-k)

*May be helpful to think of mean squares as standard deviations *For the admissions example: n = number of observations = 36 k = number of groups = 3 k-1 df for MS model since it measures the variation of the k group means about the grand mean

n-k df for MS error since it measures the variation of the n observations about k group means

Example: Difference in mean admissions (μ_i) by moon cycle



To evaluate whether moon cycle explains the variation in admissions...

Step 1: Compute mean squares:

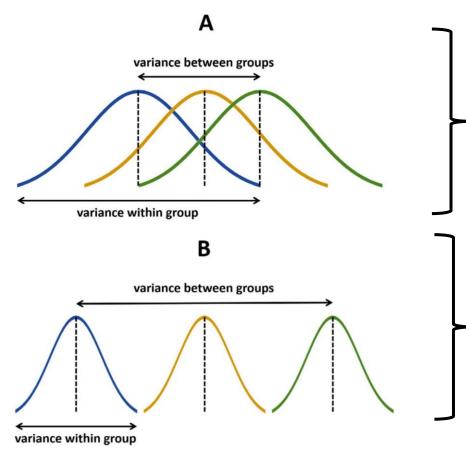
MS Model = SS Model / (k-1) MS Error = SS Error / (n-k)

Step 2: Compute F-statistic:

F = (MS Model) / (MS Error)

*F-statistic is a measure of the variability between groups divided by a measure of the variability within groups

F-Statistic

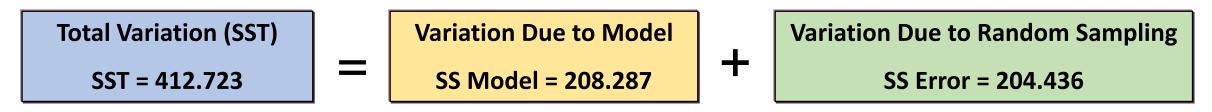


F = (MS Model) / (MS Error) F = (MS Between) / (MS Within)

F is small \rightarrow variability between groups is small relative to the variation within groups (there is probably no difference among these groups – do not reject the null hypothesis)

F is large \rightarrow variability between groups is large relative to the variation within groups (there is probably a difference among these groups reject the null hypothesis of equal means)

Example: Difference in mean admissions (μ_i) by moon cycle



To evaluate whether moon cycle explains the variation in admissions...

Step 1: Compute mean squares:MS Model = SS Model / (k-1)MS Error = SS Error / (n-k)

Step 2: Compute F-statistic: F = (MS Model) / (MS Error)

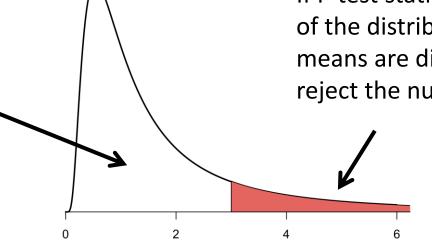
Step 3: Compare F-statistic to F-distribution

F-Distribution

The mathematical equation for the F-distribution below requires 2 values to define (denoted df_1 and df_2 , where df = degrees of freedom):

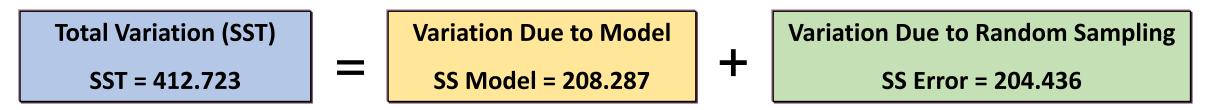
- df₁ = k-1
- $df_2 = n-k$
- n = number of subjects and k = number of groups

If F-test statistic falls in this part of the distribution then do not conclude the means are different (i.e., do not reject the null hypothesis)



If F-test statistic falls in this part of the distribution then conclude means are different (i.e., do reject the null hypothesis)

Example: Difference in mean admissions (μ_i) by moon cycle



To evaluate whether moon cycle explains the variation in admissions...

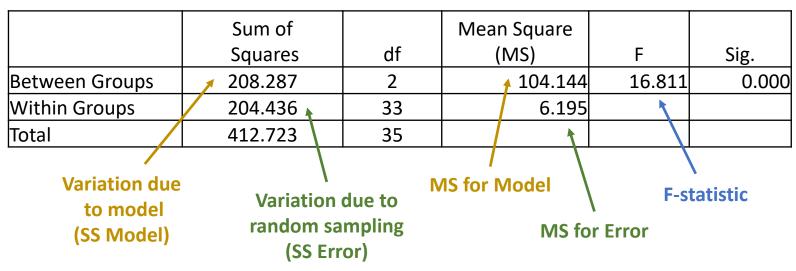
 Step 1: Compute mean squares:
 MS Model = SS Model / (k-1)
 MS Error = SS Error / (n-k)

 MS Model = (208.287) / (3-1)
 MS Error = (204.436) / (36-3)
 MS Error = 6.195

Step 2: Compute F-statistic: F = (MS Model) / (MS Error) = 104.144 / 6.195 = 16.811 (p-value < 0.0001)

Step 3: Compare F-statistic to F-distribution with $df_1=2$, $df_2=33$

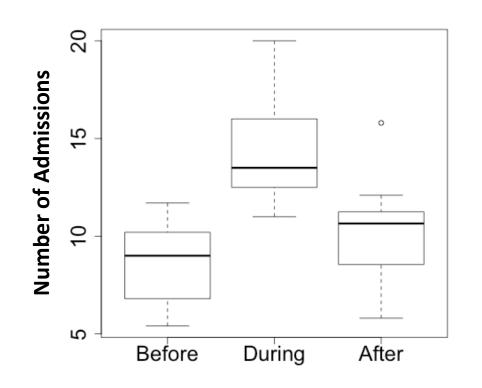
ANOVA SPSS: Analyze > Compare Means > One-Way ANOVA



ANOVA Table in SPSS:

Conclusion: Data indicate that there is <u>at least one</u> difference in the mean admissions by moon cycle (p<0.0001) with mean number of admissions of 8.7, 14.4, and 10.3 for before, during, and after full moon, respectively.

Data shows means are different... but which ones?



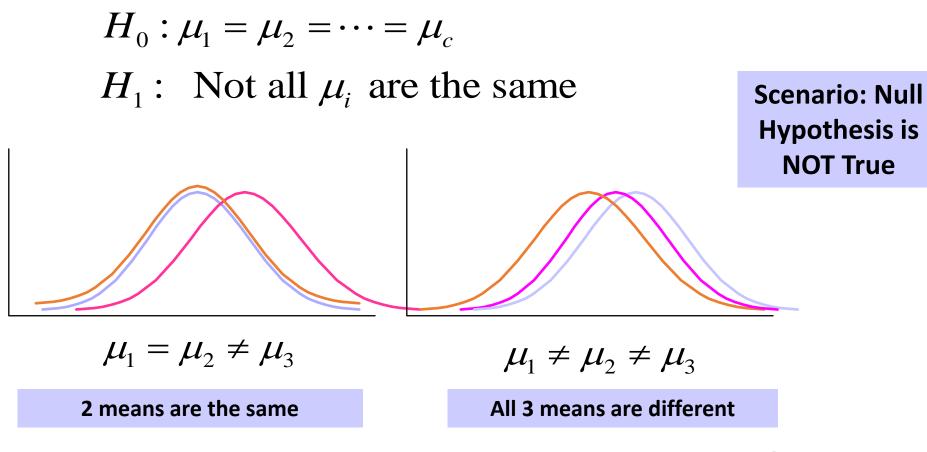
- There are 3 possible comparisons of means:
 - Before vs. During full moon
 - Before vs. After full moon
 - During vs. After full moon
- Recall our hypotheses:
 - H_0 : The population means of all groups are equal

 $(\mu_{Before} = \mu_{During} = \mu_{After})$

H₁: <u>At least one</u> population mean differs

(*NOT* $\mu_{Before} \neq \mu_{During} \neq \mu_{After}$)

Data shows means are different... but which ones?



Data shows means are different... but which ones?

Statistically significant F-test for ANOVA...

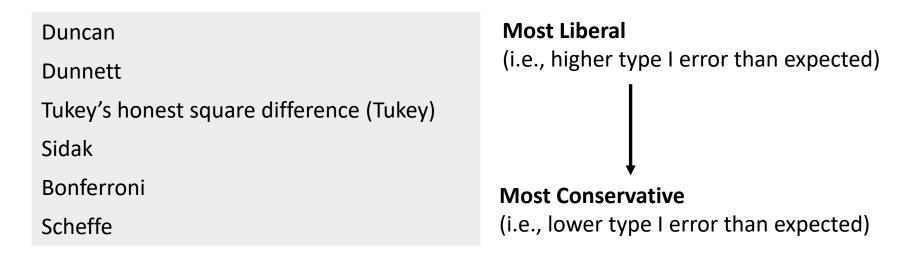
- Indicates that not all of the group means are equal
- Does NOT identify which particular differences between pairs of means are significant.

The role of post-hoc testing is to explore differences between multiple group means while controlling the experiment-wise error rate (usually $\alpha = 0.05$)

- Should only be performed after a statistically significant "global" F-test
- A few methods...
 - Comparing all groups against each other (all pairwise comparisons)
 - Comparing specific pairs of interest (specific pairwise comparison)
 - Comparing all treatment groups against one control group.

Multiple Comparison Post-Hoc Methods

Several procedures (partial list):



Note: Least square difference (LSD) is included in SPSS but does not provide adjustment for multiple comparisons, so not listed here

Dependent variable: Admissions

	(l) fullmoon	(J) fullmoon	Mean Difference (I-J)	Std. Error	Sig.
Tukey HSD	Before	During	-5.70000*	1.01612	.000
		After	-1.55833	1.01612	.289
	During	Before	5.70000*	1.01612	.000
		After	4.14167*	1.01612	.001
	After	Before	1.55833	1.01612	.289
		During	-4.14167*	1.01612	.001
Bonferroni	Before	During	-5.70000*	1.01612	.000
		After	-1.55833	1.01612	.404
	During	Before	5.70000*	1.01612	.000
		After	4.14167*	1.01612	.001
	After	Before	1.55833	1.01612	.404
		During	-4.14167*	1.01612	.001

Groups evaluated in each pairwise comparison (one comparison per row)

Difference in means between groups

Note: mean differences significant at the 0.05 level are denoted with "*"

Standard error for difference in means

Note: SE = 1.01612 for all comparisons is equal because n=12 in each group.

P-value for difference in means

Dependent variable: Admissions

	(I) fullmoon	(J) fullmoon	Mean Difference (I-J)	Std. Error	Sig.
Tukey HSD	Before	During	-5.70000*	1.01612	.000
		After	-1.55833	1.01612	.289
	During	Before	5.70000*	1.01612	.000
		After	4.14167*	1.01612	.001
	After	Before	1.55833	1.01612	.289
		During	-4.14167*	1.01612	.001
Bonferroni	Before	During	-5.70000*	1.01612	.000
		After	-1.55833	1.01612	.404
	During	Before	5.70000*	1.01612	.000
		After	4.14167*	1.01612	.001
	After	Before	1.55833	1.01612	.404
		During	-4.14167*	1.01612	.001

Groups evaluated in each pairwise comparison (one comparison per row)

Difference in means between groups Note: mean differences significant at the 0.05 level are denoted with "*"

Standard error for difference in means

Note: SE = 1.01612 for all comparisons is equal because n=12 in each group

P-value for difference in means

Dependent variable: Admissions

	(I) fullmoon	(J) fullmoon	Mean Difference (I-J)	Std. Error	Sig.
Tukey HSD	Before	During	-5.70000*	1.01612	.000
		After	-1.55833	1.01612	.289
	During	Before	5.70000*	1.01612	.000
		After	4.14167*	1.01612	.001
	After	Before	1.55833	1.01612	.289
		During	-4.14167*	1.01612	.001
Bonferroni	Before	During	-5.70000*	1.01612	.000
		After	-1.55833	1.01612	.404
	During	Before	5.70000*	1.01612	.000
		After	4.14167*	1.01612	.001
	After	Before	1.55833	1.01612	.404
		During	-4.14167*	1.01612	.001

Groups evaluated in each pairwise comparison (one comparison per row)

Difference in means between groups

Note: mean differences significant at the 0.05 level are denoted with "*"

Standard error for difference in means Note: SE = 1.01612 for all comparisons is equal because n=12 in each group

P-value for difference in means

Dependent variable: Admissions

	(I) fullmoon	(J) fullmoon	Mean Difference (I-J)	Std. Error	Sig.
Tukey HSD	Before	During	-5.70000*	1.01612	.000
		After	-1.55833	1.01612	.289
	During	Before	5.70000*	1.01612	.000
		After	4.14167*	1.01612	.001
	After	Before	1.55833	1.01612	.289
		During	-4.14167*	1.01612	.001
Bonferroni	Before	During	-5.70000*	1.01612	.000
		After	-1.55833	1.01612	.404
	During	Before	5.70000*	1.01612	.000
		After	4.14167*	1.01612	.001
	After	Before	1.55833	1.01612	.404
		During	-4.14167*	1.01612	.001

Groups evaluated in each pairwise comparison (one comparison per row)

Difference in means between groups

Note: mean differences significant at the 0.05 level are denoted with "*"

Standard error for difference in means

Note: SE = 1.01612 for all comparisons is equal because n=12 in each group.

P-value for difference in means

Dependent variable: Admissions

	(I) fullmoon	(J) fullmoon	Mean Difference (I-J)	Std. Error	Sig.
Tukey HSD	Before	During	-5.70000*	1.01612	.000
		After	-1.55833	1.01612	.289
	During	Before	5.70000*	1.01612	.000
		After	4.14167*	1.01612	.001
	After	Before	1.55833	1.01612	.289
		During	-4.14167*	1.01612	.001
Bonferroni	Before	During	-5.70000*	1.01612	.000
		After	-1.55833	1.01612	.404
	During	Before	5.70000*	1.01612	.000
		After	4.14167*	1.01612	.001
	After	Before	1.55833	1.01612	.404
		During	-4.14167*	1.01612	.001

There is a significant difference in mean admissions between...

- Before vs. during a full moon (diff=5.70, p<0.0001)
- During vs. after a full moon (diff =4.14, p=0.001)

No difference in mean admissions for Before vs. After (diff=1.56, p=0.289)

ANOVA with more than one independent variable

ANOVA with one independent variable: One-way ANOVA

Example: Dependent variable=admissions Independent variable 1=moon cycle

ANOVA with two independent variables: Two-way ANOVA

Example: Dependent variable=admissions Independent variable 1=moon cycle Independent variable 2=Friday (yes/no)

With 2 or more independent variables....use another procedure in SPSS called the **General Linear Model (GLM)**

General Linear Model (1 Independent Variable) SPSS: Analyze > General Linear Model > Univariate

GLM Table in SPSS:

Tests of Between-Subjects Effects							
Dependent Variable:	Admission						
Source	Type III Sum of						
	Squares	Df	Mean Square	F	Sig.		
Corrected Model	208.287ª	2	104.144	16.811	.000		
Intercept	4464.467	1	4464.467	720.654	.000		
fullmoon	208.287	2	104.144	16.811	.000		
Error	204.436	33	6.195				
Total	4877.190	36					
Corrected Total 412.723 35							
a. R Squared = .505 (A	Adjusted R Squar	red = .475)					

In GLM, output labeled differently:

Between groups = fullmoon Within groups = Error Total = Corrected Total

General Linear Model (2 Independent Variable) SPSS: Analyze > General Linear Model > Univariate

GLM Table in SPSS:

Tests of Between-Subjects Effects								
Dependent Variable:Admission								
Source	Type III Sum of							
	Squares	df	Mean Square	F	Sig.			
Corrected Model	214.018ª	5	42.804	6.462	.000			
fullmoon	204.162	2	102.081	15.412	.000			
Friday	4.371	1	4.371	.660	.423			
fullmoon * Friday	1.159	2	.580	.088	.916			
Error	198.705	30	6.624		11			
Corrected Total	Corrected Total 🖌 412.723 35							
a. R Squared = .519 (Adjysted R Squared = .438)								

- Add independent variable Friday as a "main effect" into the model.
- Add interaction between fullmoon and Friday into the model (Does the relationship between fullmoon and admissions depend on Friday?)

Total variation (SST) is the same as with 1 independent variable

No interaction between fullmoon and Friday (p=0.916) and no effect of Friday (p=0.423)

Questions?

Correlation

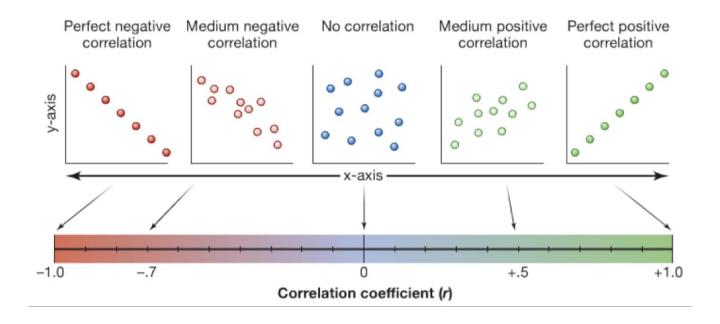
So far we have assumed that the independent variable is categorical (2 or more groups)... What if the independent variable is continuous?

The correlation coefficient (ρ) measures the strength of association between two variables

- Pearson's correlation coefficient "r" is the most commonly used correlation coefficient
- Quantifies the <u>linear</u> relationship between two continuous variables

Pearson's Correlation Coefficient "r"

Correlation coefficient ranges from -1 to 1 and shows magnitude (strong, medium, weak) and direction (positive, negative) of association



Pearson's Correlation Coefficient "r"

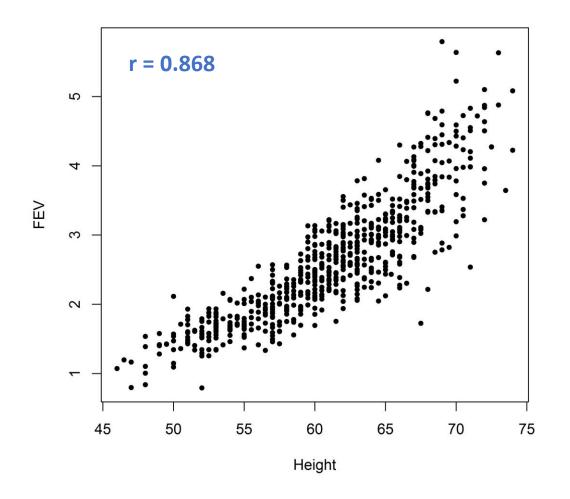
Person's correlation coefficient is calculated as the **covariance of the two variables** (a measure of how the variables change together) divided by the **product of their standard deviations**:

$$r = \frac{1}{(n-1)} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

Example: FEV & Height

- Sample: 654 children ages 3 to 19 who were seen in the Childhood Respiratory Disease Study in East Boston
- **Objective**: Evaluate the linear relationship between FEV and height

Example: FEV & Height



Step 1: Hypotheses

 H_0 : ρ = 0 vs. H_1 : ρ ≠ 0

Step 2: Test Statistic:

$$t = r \sqrt{\frac{n-2}{1-r^2}}$$

r = *sample correlation*

Step 3: Compare test statistic to a t-distribution with n-2 degrees of freedom

Pearson Correlation

SPSS: Analyze > Correlate > Bivariate > Coefficients = Pearson

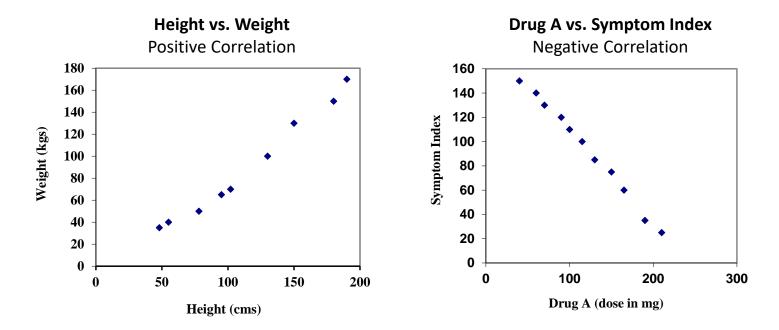
Correlations

		FEV	Hgt	
FEV	Pearson Correlation	1	.868 🔭 ┥	Pearson Correlation "r"
	Sig. (2-tailed)		.000 ┥	
	Ν	654	654	P-Value
Hgt	Pearson Correlation	.868	1	
	Sig. (2-tailed)	.000		
	Ν	654	654	

**. Correlation is significant at the 0.01 level (2-tailed).

Conclusion: There is a strong, positive correlation between FEV and height (Pearson Correlation r = 0.868; p<0.0001)

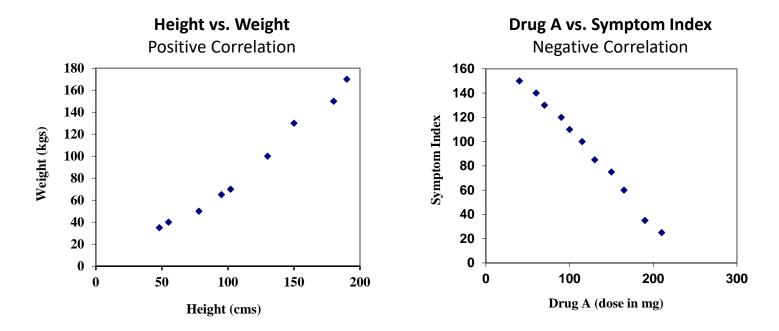
Why do we need linear regression?



Correlation

- Useful measure to summarize the relationship (magnitude & direction) between two variables
- Describes the extent to which two variables move together
 - Weight increases with height
 - Symptoms decrease with drug A dose

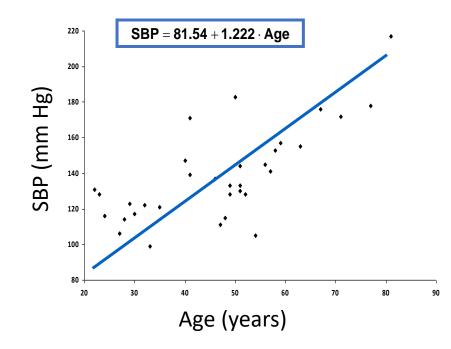
Why do we need linear regression?



Linear Regression

- Provides additional information on the magnitude of the relationship
- Measures the impact of 1 unit change in independent variable on dependent variable
 - A 1 unit increase in height results in a 5 unit increase in weight
 - A 1 unit decrease in dose results in a 5 unit decrease in symptom index

How does linear regression work? Example: Age vs. Systolic Blood Pressure (SBP)



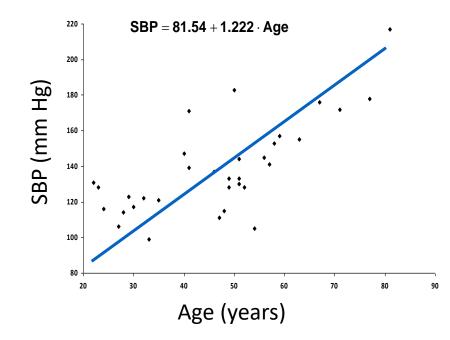
Adapted from Colton T. Statistics in Medicine. Boston: Little Brown, 1974

Diamonds represent the individual observations (N=33)

Equation for the blue "line of best fit" outputs the predicted SBP value

- Intercept: SBP value if age = 0 is 81.54
 - Denoted $\alpha = 81.54$
- **Slope**: Average change in SBP per 1 year change in age is 1.222
 - Denoted $\beta_1 = 1.222$

How does linear regression work? Example: Age vs. Systolic Blood Pressure (SBP)



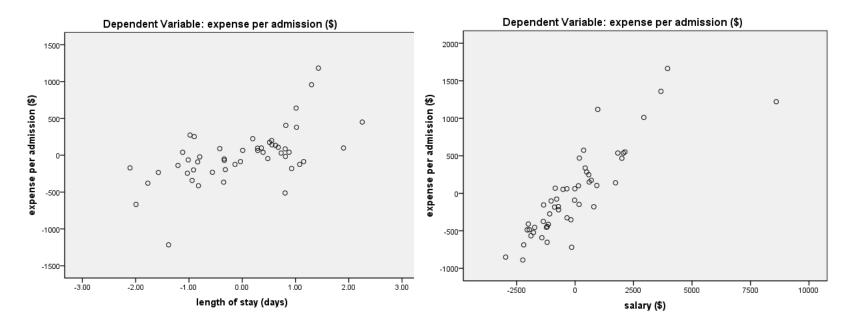
Adapted from Colton T. Statistics in Medicine. Boston: Little Brown, 1974 The vertical deviation from each diamond to the line represents the difference in the observed and predicted SBP values

- The sum of these squared deviations measures "goodness of fit" (how well the line fits the data)
- The smaller the deviation, the closer the points are to the predicted line

Our goal is to find the α and β_1 that give the minimum value for the sum of squared deviations (smallest error)

• Called least squares method

Effect of age on SPB addressed by testing whether slope (β_1) is different from zero using a t-test.



Similar to ANOVA, with more than 1 variable:

- First, determine whether both variables explain the relationship
- Second, determine variables that are important to the outcome

First, let's look at correlation:

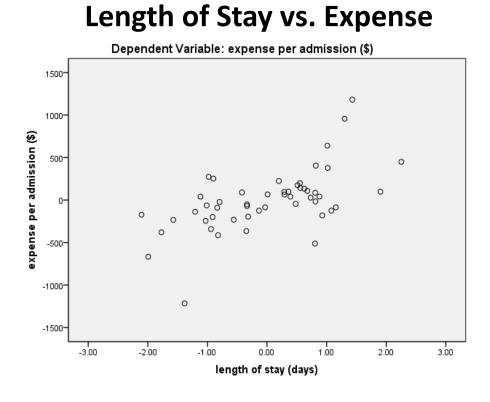
Both length of stay and salary are significantly correlated with hospital expenses.

SPSS: Analyze > Correlate > Bivariate > Coefficients = Pearson

Correlations								
		expense per admission (\$)		length of stay (days)	salary (\$)			
	Pearson Correlation		<mark>.322*</mark>	1	046			
length of stay (days)	Sig. (2-tailed)		<mark>.021</mark>		.748			
	Ν		51	51	51			
salary (\$)	Pearson Correlation	•	<mark>794^{**}</mark>	046	1			
	Sig. (2-tailed)		<mark>.000</mark>	.748				
		51	51	51				
	*. Correlation is significant at the 0.05 level (2-tailed).							
**. Correlation is	significant at the 0.01 le	evel (2-ta	iled).					

Linear Regression

Example: Predicting hospital expenses from **length of stay** and salary level



Next, let's fit the regression model including only length of stay:

SPSS: Analyze > Regression > Linear

Output Tables:

- Variables entered/removed
- Model summary
- ANOVA
- Coefficients
- Residual statistics

Linear Regression

Example: Predicting hospital expenses from **length of stay** and salary level

SPSS: Analyze > Regression > Linear

Model Summary^b

Model	R	R-Square	Adjusted R-Square	SE of the Estimate
1	0.322ª	<mark>0.104</mark>	0.085	577.589

a. Predictors: (Constant), length of stay (days)

b. Dependent variable: expense per admission (\$)

Simple Linear Regression:

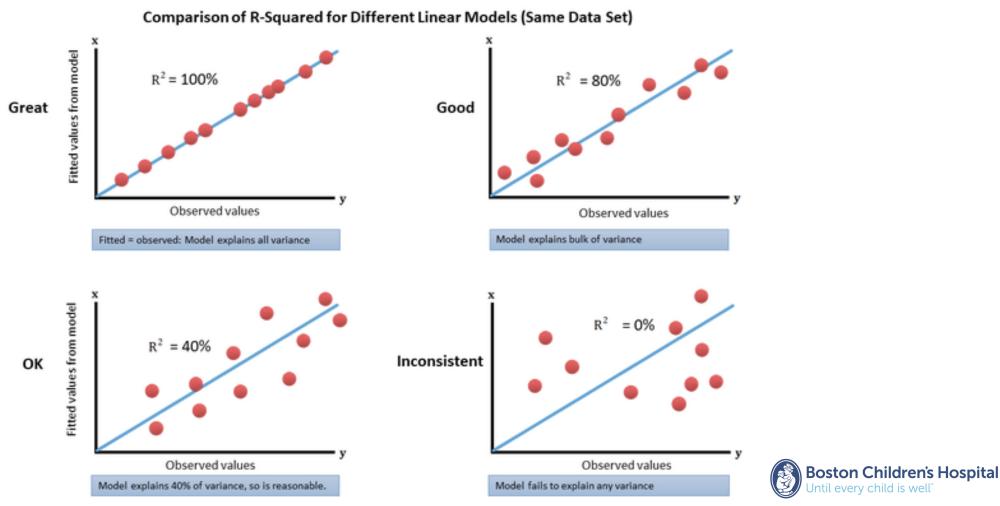
R = Pearson correlation of length of stay and expense = 0.322

 R^2 (R-square) = (0.322)² = 0.104

$R^2 \rightarrow$ "Goodness of Fit" Measure

- R² reflects how well your data fits a regression line
 - Formally defined as the proportion of the variance for a dependent variable (i.e., hospital expense) that is explained by the independent variables (i.e., LOS) in a regression model
 - The better the model fits the data (i.e., the closer observations are to the best-fit line), the smaller the variance and the higher the R²
- Ranges between 0 (0%) and 1 (100%)
- Often expressed as percentage, rather than decimal

$R^2 \rightarrow$ "Goodness of Fit" Measure



SPSS: Analyze > Regression > Linear

ANOVA Table^b

Model		Sum of						
		Squares	df	Mean Square	F	Sig.		
1	Regression	0.18908	1	0.18908	5.668	. 021 ª		
	Residual	1.635	49	0.03336		1		
	Total	1.824	50					
a. P	a. Predictors: (Constant), length of stay (days)							

a. Predictors: (Constant), length of stay (days)

b. Dependent Variable: expense per admission (\$)

Indicates that the predictors in the model (in this case, LOS) significantly explain the variation in the data (p=0.021).

Regression vs. Residual Sum of Squares

In regression analysis, there are three main types of sum of squares:

Total sum of squares

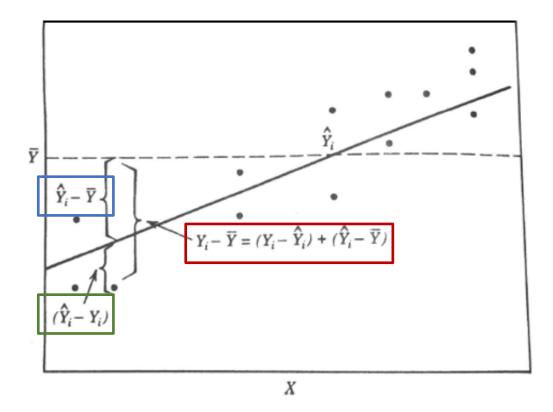
• Reflects total variation in the sample

Regression sum of squares ($\widehat{Y_i} - \overline{Y}$)

- Reflects how well a regression model represents the modeled data
- Higher regression sum of squares (i.e., larger difference between predicted and mean values) indicates that the model does not fit the data well

Residual sum of squares ($\widehat{Y_i} - Y_i$)

- Reflects variation in the dependent variable that <u>cannot</u> be explained by the model (measuring error)
- Higher residual sum of squares (i.e, larger difference between predicted and observed values) indicates that the model poorly explains the data

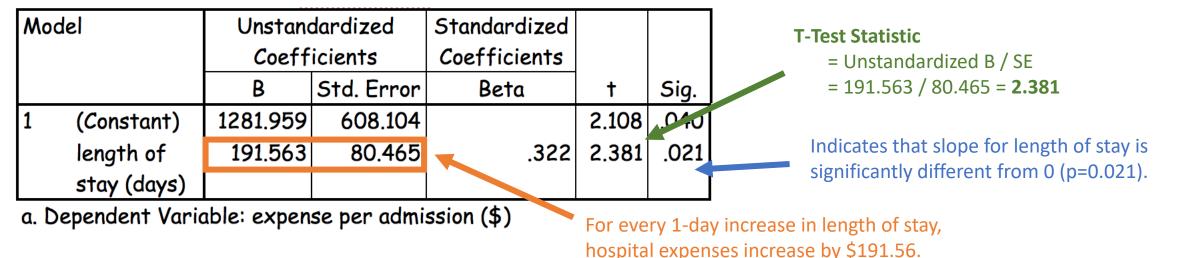


 \widehat{Y}_i The predicted value estimated by the regression line \overline{Y} The mean value of the sample

 Y_i The observed value

SPSS: Analyze > Regression > Linear

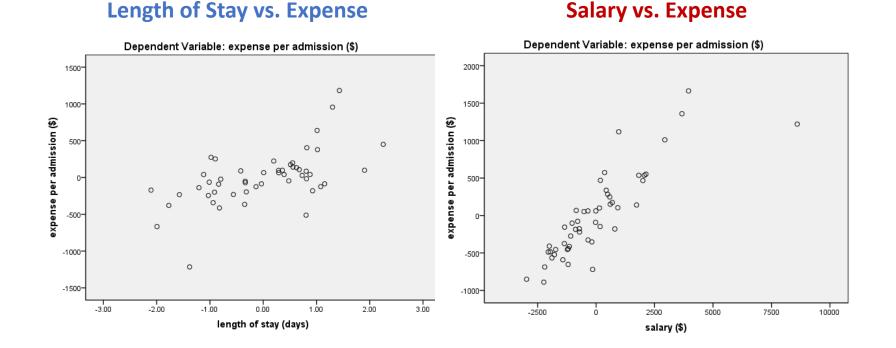
Coefficients Table^a



Note: With 1 independent variable F test (ANOVA Table) and t-test results (Coefficient Table) are equal. Specifically, F test statistic = 5.688 is equal to the square of the t-test statistic = $t^2 = (2.381)^2$

Linear Regression

Example: Predicting hospital expenses from **length of stay** and **salary level**



SPSS: Analyze > Regression > Linear

ANOVA Table^b

M	odel	Sum of Squares	df	Mean Square	F	Siq.
1	Regression	1.384	2		75.554	<u> </u>
	Residual	.4396	48	.00916		
	Total	1.824	50			

a. Predictors: (Constant), salary (\$), length of stay (days)

b. Dependent Variable: expense per admission (\$)

Indicates that the predictors in the model significantly explain the variation in the data (p<0.0001)

SPSS: Analyze > Regression > Linear

Coefficients Table^a

Mo	del	Unstanda Coeffic		Standardized Coefficients			Indicates that slope for both length of stay and
		В	Std. Error	Beta	+	Sig.	salary are significantly different from zero
1	(Constant)	-2582.736	464.770		-5.557	.000	(p<0.0001)
	length of stay (days)	213.797	42.208	.359	5.065	.000	
	salary (\$)	.249	.022	.810	11.422	.000	

a. Dependent Variable: expense per admission (\$)

Prediction Model:

```
Expense = \alpha + \beta_1^* (length of stay) + \beta_2^* (salary)
```

Expense = -2582.736 + 213.797*(length of stay) + 0.249*(salary)

Note:

- Least squares method is used to estimate α , β_1 , β_2
- With 2 or more independent variables, coefficients (β_1 , β_2) are called partial regression coefficients

Prediction Model:

Expense = $\alpha + \beta_1^*$ (length of stay) + β_2^* (salary)

Expense = -2582.736 + 213.797*(length of stay) + 0.249*(salary)

Interpretation:

 β_1 is the amount expense changes on average with 1 unit increase in length of stay at a fixed value of salary (i.e., controlling for salary) β_2 is the amount expense changes on average with 1 unit increase in salary at a fixed value of length of stay (i.e., controlling for length of stay)

SPSS: Analyze > Regression > Linear

Model Summary^b

Model	R	R-Square	Adjusted R-Square	SE of the Estimate
1	0.871ª	<mark>0.759</mark>	<mark>0.749</mark>	302.649

a. Predictors: (Constant), salary (\$), length of stay (days)

b. Dependent variable: expense per admission (\$)

Multiple Linear Regression:

R² (R-square) = (Sum of squares regression) / (Sum of squares total) = 1.384 / 1.824 = 0.759 What is the adjusted R-square?

Adjusted R²

- Takes into account number of predictors in model
- Define: N=number of observations p=number of predictors
- Calculate as:

 $R_{adj}^{2} = 1 - (1-R^{2}) (N-1) / (N-p)$ = 1 - (1-0.759)*(50) / (50-2) = 0.749

• R²_{adj} will always be smaller than R²

Interpretation

"Length of stay and salary significantly explain the variation in hospital expenses (F-test statistic = 75.55, p<0.0001). The estimated coefficient for length of stay was positive indicating that expenses increase by approximately \$214 for an additional day (SE = 42). The estimated coefficient for salary was also positive indicating that expenses increase by approximately \$0.25 for every \$1 increase in salary (SE=0.022). The adjusted R-square for this model is 0.749."

Model Diagnostics

- Residual Plots in SPSS
 - Check to ensure normally distributed
 - Independent of one another
 - Similar in terms of variance
- Unusual Observations: Need to determine reason for them and have a strong justification for exclusion
 - **Outliers** (extreme residuals) → Data points that diverge from the overall pattern
 - Influential Observations (extreme predicted values) → Influence the slope of regression line

Linear Regression Summary:

- **F-test** \rightarrow used to determine overall significance of relationship
- Coefficients, SE and 95% CI → used to describe effect of each

independent variable on outcome

- R^2 and $R^2_{adi} \rightarrow$ provide estimate of strength of relationship
- Model Diagnostics \rightarrow check model assumptions and identify outliers that could bias the estimates (residual plots, etc.)

Best Model?

- If models have the **same** number of independent variables...
 - Choose model with highest value of R²_{adj}
 - This gives 'maximum value' per independent variable
 - This model will also have the highest value of R² and F
- If models have a **different** number of independent variables...
 - Highest value of R²_{adj} (more independent variables)
 - Highest value of F (fewer independent variables)
- Clinical Relevance!

Next Class

- We interpret regression coefficients for continuous predictors as slopes... what about **categorical predictors**?
- We've spent the last two classes discussing methods for continuous outcomes... what about **categorical outcomes**?

Questions?

kimberly.greco@childrens.harvard.edu

Linear Regression